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The local and integral characteristics of flat MHD channels are studied with allowance for
longitudinal and transverse edge effects and heterogeneities in the distributions of conduc-
tivity and stream velocity. An analysis is made of the effect of the finite dimensions of the
insulating inserts in the longitudinal edge effect and of the modular construction of the side
wall in the transverse edge effect on the output parameters of MHD channels, The solution
of the problem is based on reduction of the initial quasilinear elliptical equation for the elec-
trical potential with allowance for Ohm's law to an integral equation of the Fredholm type
relative to the current density,

1. Introduction. The output parameters of conduction magnetohydrodynamic (MHD) instruments de-
pend strongly on the nature of the distribution of velocity v, conductivity o, and external magnetic field B,
as well as on the construction of the conducting and insulating walls of the MHD channel. The development
of this dependence is connected with the calculation of the electric field in the channel for a fixed wall
geometry and given distributions of v, o, and B (kinematic problems). Such problems usually are solved
in a two-dimensional formulation which in many cases is allowed by the actual three-dimensional nature of
the electric field in the channel.

The construction of solutions of two-dimensional kinematic problems plays an important role in the
study of flows with allowance for the MHD interaction, which can be made on the basis of a modular solu-
tion of the gasdynamical and electrodynamical problems using iteration algorithms [1].

The main types of problems considered are connected with the study of the transverse and longitudinal
edge effects in MHD channels. A detailed theoretical analysis of these effects with a survey of the litera-
ture is given in the monographs [2, 3], as well as in [4-7]. These problems usually come down to the solu~
tion of an elliptical equation for the electrical potential ¢ [2]. Such solutions can be constructed in finite
analytical form only for particular cases, for example, when the equation for the potential reduces to the
Laplace or Poisson equations. This is possible if the magnetic Reynolds number R, is smalil and the con-
ductivity of the medium is constant. The second condition is not satisfied for many problems of practical
importance connected with the motion of a conducting gas.

When the distribution of conductivity and velocity is nonuniform the analysis of MHD flow becomes
complicated. In general it can be based on the use of direct difference methods [6], although in problems
with discontinuous boundary conditions the use of these methods requires a large number of calculation
points.

Effective algorithms for the calculation of electric fields in the channels of MHD instruments with
allowance for sectioning of the walls and nonuniform distributions of velocity, conductivity of the stream,
and magnetic field can also be constructed on the basis of integral representations. It should be noted that
the kernels of the integral equations can to a certain extent "absorb" the discontinuity of the solutions at the
boundaries between insulators and conductors, which permits a considerable reduction in the number of
calculation points compared with direct numerical methods. In addition, in a number of cases the conver-
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sion to integral representations facilitates the proof of uniqueness of the solutions obtained, which often rep-
resents an independent problem in finite-difference methods. Integral representations in the solution of
electrodynamic problems prove to be quite effective in the calculation of electric and magnetic fields (see
[7-10], for example).

2. Integral Equations for the Electrical Potential and Current Density. Let us consider the two-di-
mensional MHD flow of a conducting medium with a velocity v (%, y) and conductivity o(x, y) in an external
magnetic field B (x, y), (div B =0, rot B =0).

At small magnetic Reynolds numbers Ry, and Hall parameter § the distributions of current density
j and potential ¢ in dimensionless form are described by the equations

j=o(v X B— Vo) (2.1)
Ap=(vXB—~Vp)VIlno+ Brotv 2.2)
with the boundary conditions at the electrodes
o= £ (2.3)
at the grounded conducting parts of the construction
e=0 (2.4)
and at the insulators
99/ 0n = (v X B)n (2.5)

where n is the unit normal to the channel surface.

Here the dimensions are with respect to h, v is with respect to vy Bto By, 0 to gy, j to oyv By, and
@ to vyBgh; h and v, are half the interelectrode distance and the velocity at the entrance to the MHD channel
averaged over the cross section, respectively; B, is the maximum induction of the external magnetic field
in the channel. The following value is taken as the characteristic conductivity:

h
co=h/S‘i—y at z=0
[
The main difficulty in the application of integral methods to the solution of equations of the type of
(2.2) is connected with the construction of the influence functions determining the structure of the kernels
of the corresponding integral equations. A search for such functions directly for (2.2) is possible only in
individual cases (for example, when (2.2) is reduced to an equation of the type

A¢ + ko = f (z, y), where k =const [T, 8]).

Broader possibilities are connected with integral representations of general elliptical equations through the
Green function for the Laplace equation (see [11], for example). Such a function is determined only by the
boundary conditions of the problem and does not depend on the distribution of conductivity, the stream velo-
city, or the topography of the magnetic field. The Green function can be constructed for a wide class of
problems with the help of a conformal transformation of the regions being considered onto canonical regions
in which Green's function is known.

The Green function of the mixed boundary problem for the Laplace equation A¢ =0 has the form [12]

G(-fo: yO, Z, y) - - lIl V((t - x(])z + (y - yo)2 + g (x07 Yo» T, y)

where g (%, ¥y, X, ¥) is an analytical function which assures that the following boundary conditions for G,
corresponding to the conditions (2.3)-(2.5), are satisfied: G=0 at the surface of the metallic walls, dG/dn=
0 at the insulators.

Applying the second Green equation to (2.2) and using the houndary conditions for ¢ and G, we obtain

Qo (20, yo) = S o) Lo 1) g S [v (1) X B (1)] nG (2o, ¥o, Y) dT

Te T (2'6)

+§S{[v(x, YXB(@y) — Vo, yVins(z, y) + Bz y)rot v (z, ¥)} G (2o, ¥o, z, y)dxdy
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where Ty is the part of the boundary of the region corresponding to the conducting walls while Tj is the s
same for the insulating walls, and S is the region of the channel

- 231, (101 yO) Ev S
Q=1—n (20, =T
07 (-750, yO)%‘SUF

Equation (2.6) can be reduced to an integral equation relative to ¢ by integration by parts using (2.1).

Because of the discontinuous boundary conditions the gradient V¢ can have a singularity whose nature
is not known beforehand. The results of the analysis will be correct in the strict sense if the product
V¢ (V In o) G is integrable, which is satisfied in a majority of practical cases.

The distribution of current density over the channel cross section is of the greatest practical interest.
By determining the gradient ¥, with respect to x; and y, from the right and left sides of (2.6) and using
(2.1) we obtain an integral equation relative to the current density j (jx, jy)

@or o) = (20, Y0) {¥ (@6, Y0) % B (21, ¥0) ~ o [5 90n) Vo 228800 gy { (i () x B

e r;

el . 1 N
X VoG (2o, Yo, Y)d7 + \\[B(z, y)rot v (z, y) — j(z, ¥) V=———| VoG (2o, Yo, x, y)dzdy (2.7)
5 ¢ (x9 y)

which is equivalent to a system of two integral equations relative to the corresponding components jy and
iy

The integral equation (2.7) has a singularity because of V;G,. It can be shown that this singularity is
weak and (2.7) is an equation of the Fredholm type.

The integral representation was used to calculate the two-dimensional current distribution in a longi-
tudinal cross section of the end zone of a channel and in a transverse cross section of the working section
of the channel.

The system of integral equations for j, and jy was solved on an electronic computer by the method of
finite sums. The removal of the weak singularity in the kernels of the integral equations was done in ac-
cordance with [12]. The system was solved by the iferation method which showed good convergence. For
example, a relative discrepancy of less than 10~° for two successive iterations was reached in six to eight
runs,

3. Construction of Green's Functions. In studying the edge effects in long and wide MHD channels one
can neglect the mutual effect of the entrance and exit or of the opposite side walls. In this case as the
canonical region it is convenient to use a half-band with the insulator at the base (Fig. 1, a). For such a
region the Green function is constructed from the known Green function of the Dirichlet problem for a band
by a mirror reflection of this function relative to the q axis and has the form [10]

[ch (p — po) — 208 {g + g0)] [ch (p - po) ~ cos (g +- go)] (3.1)

1
G @, 40, P, @) == In {chi(p — po) — cos (¢ — go)] [Ch (p + po) — €08 (g — ¢)]

At the boundary of the canonical region G satisfies the conditions

G (po, 90, Py W) = G (Po. g0, P> 0) = 8G (pg, 40,0, 9) / 0p =0
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The Green function (3.1) can be used in the study of end effects in contoured MHD channels when the
conducting channels have either nonconducting or metallic walls separated from the electrodes by insulating
inserts, as well as in the study of transverse edge effects in channels with conducting modules on the side
walls (Fig. 1).

The solution of the problem comes down to a search for the function (3.2)
Wiz +iy) =p @y +ig(2 y) (3.2)
which accomplishes the conformal mapping of the region under consideration onto the half-band.

After determining the mapping function (3.2) one can obtain an analytical expression for the contour
integral in (2.7)

(o Zste D gy = Qg (2, 1) (3.3)
T

which considerably simplifies the calculations in analytical studies.

In numerical calculations of various edge effects in the channels of MHD instruments (see Fig. 1) the
transition from one channel studied to another is made by substituting into the calculation program a unit
which accomplishes the conformal mapping of the region {x, y} being considered onto the canonical region

{p at.

4, Longitudinal Edge Effect in a Flat MHD Channel. The distribution of the electric field was studied
in a channel whose semiinfinite electrodes are separated from the conducting nozzle by an insulating in-
sert of thickness §; the half-height of the channel is taken as unity. The dimensionless distributions of
velocity v {vx(y,), 0, 0} and conductivity o(y) were given in the form

ch M —ch My _ o1-hoe -1 “4.1)

=M =
Ve =M Fren i —sh M * (o2 + 1) (1 + o)

Here M, o4, and o, are constants whose variation makes it possible to give different profiles of vy
and o.

The use of Egs. (4.1) corresponds to the fact that the velocity and electrical resistance of the working
substance averaged over the channel cross section are constant in the direction of the y axis

1 1
vady=1, Sc‘ldy=1
0 o

The external magnetic field was assumed to be a one-component field and to be directed perpendicular
to the plane of flow. The dimensionless distribution of the magnetic field at the entrance to the MHD channel
was given as uniform in the interelectrode zone (B=1 for x = 0) and as exponentially attenuated outside it
(B=exp (ax) for x < 0). Such an approximation of B at the entrance to an MHD channel has been discussed
in detail in [13, 14].
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The mapping of this region onto the half-band was accomplished by the function
W (2) = Arch (2 (4 + %) /(4 — ) — 1]

A squaring trapezoidal equation in the region of |x| <3 and asquaring Hermite equation inthe region
of | x| > 3 were used for the conversion to finite sums in the integral equations. It was assumed that when
|x| > 3 the distributions j (jx, jy) are known and coincide with the asymptotic distributions

j» =0, jy=1—q, for z—
=0, jy=B{x) for z2——oc

As the calculations showed, this assumption is realized with an accuracy of ~ 1%.

The calculations were conducted for grids of 50 and 80 nodes and gave practically identical results
(the local differences of the two respective solutions did not exceed 1.5%).

In determining the total current of the channel the integration of j, was carried out not over the edge
of the electrode where there are singular points (j, — =) but over a contour near the edge which does not
contain points of discontinuity (the contour abed in Fig. 1a).

The results of numerical calculations of the local and integral characteristics of an MHD channel with
5 =0.25 and ¢, =0.75 are presented in Figs. 2-4. The values M=1, o;=1, and 0, =3 were adopted, which
corresponds to close to a parabolic velocity profile and to decrease conductivity of the medium in the
boundary layer.

The distributions of the jy and jy components of the current density along the length of the channel
for different values of y are presented in Fig. 2. The dependence of B on x is plotted with a dashed line in
Figs. 3 and 4. Curves 1 and 3 of Fig. 2 pertain to the distributions of jx(x) and curves 2 and 4 to the distri-
butions of jy(x). Curves 1 and 2 correspond to y=0.05 and curves 3 and 4 to y=0.95,

It is seen from the nature of the variation in the components of the current density near the channel
axis (curves 1 and 2) and in the boundary-zone (curves 3 and 4) that with the drop in the magnetic field out-
side the electrodes the end effect is manifested in the form of leak currents to the metallic parts of the
nozzle and an eddy current at the entrance to the MHD channel. As the calculations showed, the size of the
insulating insert and the magnetic field gradient exert the main effect on the end losses. A decrease in the
conductivity in the boundary regions leads to an increase in the intensity of the eddy current and a decrease
in the leak currents along the insulating gap. For a given flow rate in the channel the effect of the velocity
profile on the intensity of the eddy current and the nature of the distribution of current density inthe MHD
channel is relatively small.,

The electromagnetic characteristics of the MHD channel averaged over the cross section are of
interest for calculations of the integral characteristics of MHD channels and the construction of canonical
flows.

Distributions over the channel length of values, averaged over a cross section x=const, of the re-
tarding force (j x B) and the electrical power (JjE), relative to ogv,B* and oy ?By?, respectively, are
presented in Figs. 3 and 4 for different functions of the drop in B. (Curves 1 correspond to « =0, curves
2 to a =5, curves 3 to o = « ; the dashed curve shows the variation in B for o =5.)
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It is seen that the influence of the edge effect on the characteristics of the MHD channel averaged over
the cross section is exerted at a distance of ~0.25 diameters from the edge of the electrode., In the rest
of the electrode region the values of (j x B) and (jE) are close to the asymptotic values. A reduction in
the conductivity in the boundary layer leads to an increase in the averaged retarding force near the elec-
‘trode edges of the channel. This is explained by the decrease in the leak currents and the increase in the
intensity of the eddy current. With a sharp drop in the magnetic field outside the electrodes (@ — =) the
retardation of the flow in the electrode zone is intensified (curve 3 in Fig. 3).

The extension of the field outside the limits of the electrodes decreases the retarding force in the
electrode zone at the entrance to the MHD channel. In this case the retarding force increases sharply due
to the short-circuiting currents at the conducting walls of the nozzle, which leads to a general increase in
the retardation of the flow at the entrance to the MHD channel.

Besides the retardation of the flow at the entrance, the presence of leak currents to the grounded ele-
ments of the construction and the eddy current cause a considerable redistribution of energy in the entrance
zone of the MHD channel (see curve 1 in Fig. 4). The supplying of energy to the stream is observed in the
zone of the nozzle and the insulating gap.

The calculations show that the amount of energy supplied to the stream increases considerably with an
increase in the steepness of the drop in the field outside the electrode zone. This is explained by the growth
in the intensity of the eddy current at the entrance to the MHD channel. With an increase in « the maximum
in the energy supplied shifts to the electrode. In the initial section of the electrode zone of the channel the
generated power averaged over the cross section can exceed the corresponding value in the central zone.

5. Transverse Edge Effect in a Rectangular MHD Channel. The distribution of the electric field was
studied in a transverse cross section of a rectangular MHD channel with a modular side wall (Fig. 1, b).
The half-height of the channel is taken as equal to unity and the width of the insulating insert is 5. The ex-
ternal magnetic field was assumed to be uniform and parallel to the electrodes, and the distributions of
velocity and conductivity in the interelectrode gap were given as in Part 4, It is shown in [4] that in rec-
tangular MHD channels with a relative electrode width L = 2 the mutual influence of the edge effects at the
side walls can be neglected and a semiinfinite channel can be considered.

The mapping of the initial semiinfinite region onto the canonical region was accomplished by the func-
tion
W-(z) = Arch [2 (cos iz + 1) / {1 — cos 58} — 1]

The distributions of the j, and jy components of the current density over the height of the channel for
differepnt values of x with 6 =0.25, ¢ =0.75, M=1, ¢,=1, and 0,=3 are presented in Fig. 5. Curves 1and3
pertain to the distributions of j,(y) and curves 2 and 4 to the distributions of jy(y). Curves 1 and 2 corre-
spondtox=0.25and curves 3 and 4 to x=0.75.

The distributions of current density in the direction of the y axis near the side wall (curves 1 and 2)
indicate the presence of an intense connected eddy current at the conducting module. A comparison of the
data obtained with the results of a study of the transverse edge effect with ¢ =const and v = const made in
[4] showed that with the means adopted for making ¢ dimensionless (4.1) the reduction in ¢ in the electrode
zone leads to a decrease in the leak currents and an increase in the intensity of the connected eddy current.

The coefficient of reduction in the no-load voltage k, = ¢exx /voByh and the internal resistance of the
MHD channel Rj as functions of the relative fraction of the insulating gap ¢ for different profiles of v, and
o are given in Fig. 6. In determining ky and Rj it was assumed that the electrode width is equal to two.
The solid lines pertain to the dependences of ky on 6 and the dashed lines to the dependences of Rjon §.
Curve 1 corresponds to the calculation with o =const and M=« (vg=const); 2) o =const, M =10 (turbulent
profile); 3) o =const, M=0 (Poiseuille profile); 4) ¢ =var (¢, =1, 0,=3), M=0; 5, 6) calculated dependences
of Rjon 6 for ¢ =const and ¢ =var (o, =1, 0,=3). Because of the quasilinear nature of the problem,the
internal resistance of the MHD channel does not depend on the velocity distribution and is determined by the
channel geometry and the profile of the conductivity ¢ (%, y) [2]. I is seen that for turbulent flow of the
medium with constant conductivity the coefficient of reduction in the no-load voltage practically coincides
with kg for flow with vy=const (the difference is 1-2%). The latter makes it possible to calculate the no-
load voltage of an MHD channel with turbulent flow of the working substance from the analytical dependen-
ces of [4].
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For Poiseuille flow (curve 3) the difference of ky from the no-load voltage of the MHD channel with vx =
const is significant and reaches 15% for § =0.25. Allowance for the heterogeneity in the distribution of &
{curve 4) leads to an increase in ky compared with curve 3 (¢ =const and M=0). This is explained by the
decrease in leak currents along the insulating gap with a reduction in o in the electrode zone.

Curves 5 and 6 in Fig. 6 show that with a decrease in the relative fraction of the insulating gap at the
side wall the internal resistance of the MHD channel decreases, which is explained by the increase in the
shunting effect of the conducting module. A comparison of the curves with ¢ =const and ¢ =var shows the
weak dependenlce of the total internal resistance of the MHD channel on the profile of the conductivity ¢ when

the condition S s 'dy = 1 is satisfied.
(i}

The examples considered show the possibility of applying integral methods to the calculation of com-
plicated electric fields described by anharmonic potentials by using the apparatus of Green functions of the
Laplace equation., The integral method can be applied to the study of edge effects in various MHD channels
with curvilinear walls when the region of the channel admits the conformal mapping onto a canonical half~
band. The results obtained can be considered as strict in the sense that thanks to the uniqueness of the solu-
tions of integral Fredholm equations they can always be sufficiently approximated to exact solutions with the
help of a computer. The development of the method is postulated on the possibility in principle of its use
for problems with Ry, = 1 and § = 1 and with electrodes of finite dimensions. In the latter case two Green
functions are constructed for the corresponding boundary zones with subsequent matching of the solutions,

In conclusion the authors thank L. A. Vulis,* A. V. Gubarev, and A. L. Genkin for discussion of the
formulation of the problem and the results of the work.
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